

Radio Astronomy

Sardinia Deep Space Antenna Seminar Series

Joseph Lazio

Spacecraft Telemetry, Tracking, & Command

Radio Astronomy

Electromagnetic Spectrum

Credit: Wikipedia Images

Need Complete View of the Universe

Electromagnetic Spectrum

MS 0735.6+7421

- Cluster of galaxies
 - About 2.6 billion light-years away
 - In the constellationCamelopardalis
- Three views
 - Blue: ChandraX-rayObservatory
 - White: HubbleSpaceTelescope
 - Red: Very LargeArray

Radio Astronomy

Large radio antennas, equipped with sensitive (cryogenic) microwave receivers

- Spectroscopy
 Complements ALMA, complements NASA and ESA far-infrared—sub-millimeter missions (e.g., Planck, Herschel, SOFIA)
- Very Long Baseline Interferometry (VLBI)
 Complements VLBA, EVN, LBA; many NASA and ESA mission complements
- Time Domain
 Many NASA and ESA mission complements

Radio Astronomy

Analysis of 69 Green Bank Telescope (GBT) publications (2017)

- Spectroscopy: 38
- Time Domain: 21
- Very Long Baseline Interferometry (VLBI):
 3

- Instrumentation: 5
- Continuum/Theory/Other: 3

Periodic Table

150 Year Anniversary!

Credit: Griffith Observatory

Periodic Table

Chemical Elements

Credit: Griffith Observatory

Atoms and Quantitized Energy Levels

Hydrogen Energy Levels and Transitions

Credit: C. Mihos

10

Spectral Lines

Orion Nebula

Fraunhofer Lines

K & H: resonance lines of calcium ions

G: rotation-vibration band of CH molecules

F: Balmer- β line of hydrogen atoms

b: three lines of magnesium atoms

E: a group of lines of iron atoms

D: two resonance lines of sodium atoms (the same as in street lights)

C: Balmer- α line of hydrogen atoms

B & A: rotation-vibration band of oxygen molecules in the Earth atmosphere

Credit: Toon

Molecules: More Quantitized Energy Levels

carbon monoxide (CO)

vibrational transitions

Molecules: More Quantitized Energy Levels

Emission and Absorption and ...

... Stimulated Emission

... Amplification by the Stimulated Emission of Radiation

Light Amplification by the Stimulated Emission of Radiation (LASER)

Microwave Amplification by the Stimulated Emission of Radiation (MASER)

Orion Nebula

Molecular Line Emission

Rizzo et al. in preparation, "The line emission of Orion-KL between 41 and 50 GHz"

Most sensitive and widest spectrum of Orion KL between 6 and 7 mm. Obtained with Q-band receiver and wideband backend attached at DSS-54.

Evolved Star Survey

Molecular Line Emission

SiO Q-band survey of 67 O-rich evolved stars with 66 transitions ... 1525 spectra!!

Rizzo, Garcia-Miro et al. in preparation, "SiO, ²⁹SiO, and ³⁰SiO emission from O-rich stars: I. A survey of 61 rotational lines from 7 to 1 mm"

Hunting for Supermassive Black Holes

Molecular Line Stimulated Emission (MASER)

Interstellar Chemistry

Atomic Line Emission

First Detection of ³He⁺ in the Planetary Nebula IC 418

Stars like the Sun should produce lots of ³He

Less ³He detected than expected

- Planetary Nebulae offer chance to check how much ³He made by low-mass stars
- Only 3rd detection of ³He⁺ in planetary nebulae, by Madrid DSN antenna

Guzman-Ramirez et al.

Interstellar Gas Cloud Properties

Pineda et al. 2019

G000.0+0.0

21

Radio Astronomy

Large radio antennas, equipped with sensitive (cryogenic) microwave receivers

- Spectroscopy
 Complements ALMA, complements NASA and ESA far-infrared—sub-millimeter missions (e.g., Planck, Herschel, SOFIA)
- Very Long Baseline Interferometry (VLBI)
 Complements VLBA, EVN, LBA; many NASA and ESA mission complements
- Time Domain
 Many NASA and ESA mission complements

Spacecraft Navigation

△DOR (Delta-Differential One-Way Range)

△DOR provides Plane-of-Sky information

- Complementary to line-of-sight from Doppler and range
- Essential beyond lunar distance
- Optical analogy is called "Optical Astrometry"; uses star catalog instead of quasars

Historical Background

Pre-20th Century

Human eye capable of diffractionlimited imaging of about 1 arcminute

20/20 vision ~ U.S. quarter across football pitch

Credit: Micael W. Davidson, (Florida State Univ.)

Modest optical telescopes provide diffraction-limited imaging at 1 arcsecond resolution 60× better

Can Two Stars Be Split?

Fundamental optics

 $\theta = \lambda/D$

- λ = observing wavelength
- D = diameter of aperture

Credit:
Spencer Bliven

Human Eye

- λ ~ 550 nm (~ 0.00055 mm)
 - observing wavelength
 - green-yellow light
- D ~ 5 mm
 - diameter of pupil (aperture)
- \checkmark θ ~ 0.00011 radians ~ 0.0063° ~ 0.4 arcminutes $\theta = \lambda/D$

Radio Telescopes

- $\lambda \sim 0.30 \text{ m} (\sim 1 \text{ GHz})$
- D ~ 300 m diameter of telescope
- > θ = 0.001 radians ~ 0.06° ~ 3 arcminutes $\theta = \lambda/D$
- ! Your eye has higher angular resolution than Arecibo telescope!

Radio Telescopes

Arecibo diameter ~ 300 m

- ?? Match angular resolution of human eye ~ 1 km
- ?? Match angular resolution of modest visible wavelength telescope ~ 10 km

Radio Telescopes

Arecibo has hole in its middle!

How many holes can a telescope have and still work?

How Do Telescopes Work?

Exercise for the reader:

Consider a parabolic surface.

Show that initially parallel light rays, all traveling at the speed of light c, reach a common point, the focus, at the same time no matter where they reflect from the surface of the reflector.

Extra credit: Repeat for a spherical reflector such as Arecibo and show that the focus is a line.

- 1.Record signals at individual antennas
- 2.Bring them together "at the same time" (coherently)
- 3. Then ...

Interferometry or Aperture Synthesis

- 1. Record signals at individual antennas
- 2. Bring them together "at the same time" (coherently)
- 3. Synthesize aperture!
 a.k.a. build telescope that's mostly holes!

Van Cittert-Zernike Theorem

Formal:

Fourier Transform

$$\Gamma(u,v) = V(u, v) = \int I(\ell, m) e^{-2\pi i(u\ell + vm)} d\ell dm$$

Assumptions

Narrow field of view

Co-planar array

Monochromatic signals (narrow bandwidths)

Instantaneous signal reception

Sky brightness

Mutual coherence function a.k.a.
Visibility function

Aperture Synthesis

1974 Nobel Prize in Physics

The Nobel Prize in Physics 1974 was awarded jointly to Sir Martin Ryle and Antony Hewish "for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars."

Very Large Array

Very Long Baseline Interferometry

Very Long Baseline Array

How Small Can Radio Sources Be?

Space-based Interferometry

- By mid-1970s, clear that some radio sources still unresolved on terrestrial baselines
- Also superluminal motion
- Heuristically, if source too small, energy density not enough to be visible to terrestrial radio interferometers?
 - A.k.a. no free lunch theorem
 As synthetic apertures, interferometers limited to observing bright sources, because telescope with lots of holes
 - Inverse Compton catastrophe

Space Interferometry

From Science, 1986 October 10. Reprinted with permission from AAAS.

"Very Long Baseline Interferometric Observations Made with an Orbiting Radio Telescope" (Levy et al., 1986 October 10)

TDRSS-E + DSS-43 + Usuda

4.9 m-diameter TDRSS antenna

64 m-diameter Canberra DSCC

64 m-diameter ISAS antenna

Space Interferometry

Millimeter-wave spacebased VLBI? (Event Horizon Telescope to Event Horizon Imager)

Radio Astronomy

Conceptual Radio Telescope

*Today: Record to hard drive disk packs or even direct streaming across the Internet

Historical note: Record on magnetic tapes, including

VHS tapes

Amplify

- Signals are faint!
- Need to provide sufficient power for input to following stages of signal processing
- Typical levels of gain might be 30 dB (1000×) or more
- Typically cryogenic to reduce "noise"
 - Use low noise amplifiers (LNAs)
 - Maintain at 77 K or lower

"Noise"

> Thermodynamic equivalent between noise and power

$$P = k_B T \Delta v$$

$$k_{\rm B} = 1.38 \times 10^{-23} \, {\rm J/K}$$

 $\Delta v = bandwidth$

Frequency Conversion

Frequency Conversion

Radio Telescope

Amplification and Filtering

Interference!

UNITED

STATES

FREQUENCY

ALLOCATIONS

THE RADIO SPECTRUM

Spacecraft Communications

Required Frequency Coverage

Spectrum assignments agreed internationally

Radio Astronomy

Large radio antennas, equipped with sensitive (cryogenic) microwave receivers

- Spectroscopy
 Complements ALMA, complements NASA and ESA far-infrared—sub-millimeter missions (e.g., Planck, Herschel, SOFIA)
- Very Long Baseline Interferometry (VLBI)
 Complements VLBA, EVN, LBA; many NASA and ESA mission complements
- Time Domain
 Many NASA and ESA mission complements

Radio Astronomy Bibliography

Sardinia Deep Space Antenna Seminar Series

Joseph Lazio

Bibliography

- Eighth NAIC-NRAO School on Single-Dish Radio Astronomy, https://science.nrao.edu/science/meetings/2015/summer-schools/single-dish-program
- Condon, J. J., & Ransom, S. M. 2016, *Essential Radio Astronomy* (Princeton Univ. Press: Princeton, NJ) ISBN: 9780691137797; https://www.cv.nrao.edu/%7Esransom/web/xxx.html
- Wilson, T. L., Rohlfs, K., & Hüttemeister, S. 2013, *Tools of Radio Astronomy*, Astronomy & Astrophysics Library (Springer-Verlag: Berlin) ISBN 978-3-642-39949-7
- Thompson, A. R., Moran, J. M., Swenson, G. W., Jr. 2017, *Interferometry and Synthesis in Radio Astronomy*, 3rd Edition (Springer Nature: Cham, Switerland) ISBN 978-3-319-44429-1; https://link.springer.com/book/10.1007/978-3-319-44431-4
- Kellermann, K. I., & Verschuur, G. L. 1988, *Galactic and Extragalactic Radio Astronomy*, 2nd Edition (Springer-Verlag: Berlin)
 - Valuable introduction, even if dated
- Science with a Next Generation Very Large Array, eds. E. Murphy & ngVLA Science Advisory Council (Astronomical Society of the Pacific: San Francisco) ISBN: 978-1-58381-919-7; http://aspbooks.org/a/volumes/table_of_contents/?book_id=592
 - Valuable introduction to radio astronomy, though focused on arrays

Earth Rotation Synthesis

